Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Retrovirology ; 21(1): 3, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347535

RESUMO

Endogenous retroviruses (ERV) are indicators of vertebrate evolutionary history and play important roles as homeostatic regulators. ERV long terminal repeat (LTR) elements may act as cis-activating promoters or trans-activating enhancer elements modifying gene transcription distant from LTR insertion sites. We previously documented that endogenous feline leukemia virus (FeLV)-LTR copy number variation in individual cats tracks inversely with susceptibility to virulent FeLV disease. To evaluate FeLV-LTR insertion characteristics, we assessed enFeLV-LTR integration site diversity in 20 cats from three genetically distinct populations using a baited linker-mediated PCR approach. We documented 765 individual integration sites unequally represented among individuals. Only three LTR integration sites were shared among all individuals, while 412 sites were unique to a single individual. When primary fibroblast cultures were challenged with exogenous FeLV, we found significantly increased expression of both exogenous and endogenous FeLV orthologs, supporting previous findings of potential exFeLV-enFeLV interactions; however, viral challenge did not elicit transcriptional changes in genes associated with the vast majority of integration sites. This study assesses FeLV-LTR integration sites in individual animals, providing unique transposome genotypes. Further, we document substantial individual variation in LTR integration site locations, even in a highly inbred population, and provide a framework for understanding potential endogenous retroviral element position influence on host gene transcription.


Assuntos
Retrovirus Endógenos , Leucemia Felina , Humanos , Animais , Gatos , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/metabolismo , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais , Retrovirus Endógenos/genética , Regiões Promotoras Genéticas , Leucemia Felina/genética
2.
BMC Med Res Methodol ; 24(1): 30, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331732

RESUMO

BACKGROUND: Rapidly developing tests for emerging diseases is critical for early disease monitoring. In the early stages of an epidemic, when low prevalences are expected, high specificity tests are desired to avoid numerous false positives. Selecting a cutoff to classify positive and negative test results that has the desired operating characteristics, such as specificity, is challenging for new tests because of limited validation data with known disease status. While there is ample statistical literature on estimating quantiles of a distribution, there is limited evidence on estimating extreme quantiles from limited validation data and the resulting test characteristics in the disease testing context. METHODS: We propose using extreme value theory to select a cutoff with predetermined specificity by fitting a Pareto distribution to the upper tail of the negative controls. We compared this method to five previously proposed cutoff selection methods in a data analysis and simulation study. We analyzed COVID-19 enzyme linked immunosorbent assay antibody test results from long-term care facilities and skilled nursing staff in Colorado between May and December of 2020. RESULTS: We found the extreme value approach had minimal bias when targeting a specificity of 0.995. Using the empirical quantile of the negative controls performed well when targeting a specificity of 0.95. The higher target specificity is preferred for overall test accuracy when prevalence is low, whereas the lower target specificity is preferred when prevalence is higher and resulted in less variable prevalence estimation. DISCUSSION: While commonly used, the normal based methods showed considerable bias compared to the empirical and extreme value theory-based methods. CONCLUSIONS: When determining disease testing cutoffs from small training data samples, we recommend using the extreme value based-methods when targeting a high specificity and the empirical quantile when targeting a lower specificity.


Assuntos
Testes Diagnósticos de Rotina , Humanos , Sensibilidade e Especificidade , Viés
3.
J Basic Microbiol ; 64(1): 22-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37551993

RESUMO

Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. We investigated a critical adhesion protein, subtilisin 3, utilized by Microsporum canis during initial stages of infection, analyzing its production and expression under varying growth conditions. Additionally, as this protein must be expressed and produced for dermatophyte infections to occur, we developed and optimized a diagnostic antibody assay targeting this protein. Subtilisin 3 levels were increased in culture when grown in baffled flasks and supplemented with either l-cysteine or cat hair. As subtilisin 3 was also produced in cultures not supplemented with keratin or cysteine, this study demonstrated that subtilisin 3 production is not reliant on the presence of keratin or its derivatives. These findings could help direct future metabolic studies of dermatophytes, particularly during the adherence phase of infections.


Assuntos
Dermatomicoses , Subtilisina , Animais , Humanos , Subtilisina/metabolismo , Dermatomicoses/microbiologia , Queratinas , Microsporum/metabolismo
4.
Sci Rep ; 13(1): 17802, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853051

RESUMO

Seasonal variation in habitat use and animal behavior can alter host contact patterns with potential consequences for pathogen transmission dynamics. The endangered Florida panther (Puma concolor coryi) has experienced significant pathogen-induced mortality and continues to be at risk of future epidemics. Prior research has found increased panther movement in Florida's dry versus wet seasons, which may affect panther population connectivity and seasonally increase potential pathogen transmission. Our objective was to determine if Florida panthers are more spatially connected in dry seasons relative to wet seasons, and test if identified connectivity differences resulted in divergent predicted epidemic dynamics. We leveraged extensive panther telemetry data to construct seasonal panther home range overlap networks over an 11 year period. We tested for differences in network connectivity, and used observed network characteristics to simulate transmission of a broad range of pathogens through dry and wet season networks. We found that panthers were more spatially connected in dry seasons than wet seasons. Further, these differences resulted in a trend toward larger and longer pathogen outbreaks when epidemics were initiated in the dry season. Our results demonstrate that seasonal variation in behavioral patterns-even among largely solitary species-can have substantial impacts on epidemic dynamics.


Assuntos
Surtos de Doenças , Animais , Estações do Ano
7.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112803

RESUMO

Feline Immunodeficiency Virus (FIV) causes progressive immune dysfunction in cats similar to human immunodeficiency virus (HIV) in humans. Although combination antiretroviral therapy (cART) is effective against HIV, there is no definitive therapy to improve clinical outcomes in cats with FIV. This study therefore evaluated pharmacokinetics and clinical outcomes of cART (2.5 mg/kg Dolutegravir; 20 mg/kg Tenofovir; 40 mg/kg Emtricitabine) in FIV-infected domestic cats. Specific pathogen free cats were experimentally infected with FIV and administered either cART or placebo treatments (n = 6 each) for 18 weeks, while n = 6 naïve uninfected cats served as controls. Blood, saliva, and fine needle aspirates from mandibular lymph nodes were collected to quantify viral and proviral loads via digital droplet PCR and to assess lymphocyte immunophenotypes by flow cytometry. cART improved blood dyscrasias in FIV-infected cats, which normalized by week 16, while placebo cats remained neutropenic, although no significant difference in viremia was observed in the blood or saliva. cART-treated cats exhibited a Th2 immunophenotype with increasing proportions of CD4+CCR4+ cells compared to placebo cats, and cART restored Th17 cells compared to placebo-treated cats. Of the cART drugs, dolutegravir was the most stable and long-lasting. These findings provide a critical insight into novel cART formulations in FIV-infected cats and highlight their role as a potential animal model to evaluate the impact of cART on lentiviral infection and immune dysregulation.


Assuntos
Síndrome de Imunodeficiência Adquirida Felina , Infecções por HIV , Vírus da Imunodeficiência Felina , Humanos , Animais , Gatos , Vírus da Imunodeficiência Felina/genética , Terapia Antirretroviral de Alta Atividade , Provírus/genética , Infecções por HIV/tratamento farmacológico
8.
Virus Evol ; 9(1): veac122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694819

RESUMO

Spatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency virus (FIVLru) genetic variation and spread among bobcats (Lynx rufus) sampled from coastal southern California. We found evidence for increased rates of FIVLru lineage spread through areas of higher vegetation density. Furthermore, single-nucleotide polymorphism (SNP) variation among FIVLru sequences was associated with host genetic distances and geographic location, with FIVLru genetic discontinuities precisely correlating with known urban barriers to host dispersal. An effect of forest land cover on FIVLru SNP variation was likely attributable to host population structure and differences in forest land cover between different populations. Taken together, these results suggest that the spread of FIVLru is constrained by large-scale urban barriers to host movement. Although urbanisation at fine spatial scales did not appear to directly influence virus transmission or spread, we found evidence that viruses transmit and spread more quickly through areas containing higher proportions of natural habitat. These multiple lines of evidence demonstrate how urbanisation can change patterns of contact-dependent pathogen transmission and provide insights into how continued urban development may influence the incidence and management of wildlife disease.

9.
J Appl Ecol ; 59(6): 1548-1558, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36467865

RESUMO

Pathogen management strategies in wildlife are typically accompanied by an array of uncertainties such as the efficacy of vaccines or potential unintended consequences of interventions. In the context of such uncertainties, models of disease transmission can provide critical insight for optimizing pathogen management, especially for species of conservation concern. The endangered Florida panther experienced an outbreak of feline leukemia virus (FeLV) in 2002-04, and continues to be affected by this deadly virus. Ongoing management efforts aim to mitigate the effects of FeLV on panthers, but with limited information about which strategies may be most effective and efficient.We used a simulation-based approach to determine optimal FeLV management strategies in panthers. We simulated use of proactive FeLV management strategies (i.e., proactive vaccination) and several reactive strategies, including reactive vaccination and test-and-removal. Vaccination strategies accounted for imperfect vaccine-induced immunity, specifically partial immunity in which all vaccinates achieve partial pathogen protection. We compared the effectiveness of these different strategies in mitigating the number of FeLV mortalities and the duration of outbreaks.Results showed that inadequate proactive vaccination can paradoxically increase the number of disease-induced mortalities in FeLV outbreaks. These effects were most likely due to imperfect vaccine immunity causing vaccinates to serve as a semi-susceptible population, thereby allowing outbreaks to persist in circumstances otherwise conducive to fadeout. Combinations of proactive vaccination with reactive test-and-removal or vaccination, however, had a synergistic effect in reducing impacts of FeLV outbreaks, highlighting the importance of using mixed strategies in pathogen management.Synthesis and applications: Management-informed disease simulations are an important tool for identifying unexpected negative consequences and synergies among pathogen management strategies. In particular, we find that imperfect vaccine-induced immunity necessitates further consideration to avoid unintentionally worsening epidemics in some conditions. However, mixing proactive and reactive interventions can improve pathogen control while mitigating uncertainties associated with imperfect interventions.

10.
J Virol ; 96(23): e0120122, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374109

RESUMO

Feline leukemia virus (FeLV) is a gammaretrovirus with horizontally transmitted and endogenous forms. Domestic cats are the primary reservoir species, but FeLV outbreaks in endangered Florida panthers and Iberian lynxes have resulted in mortalities. To assess prevalence and interspecific/intraspecific transmission, we conducted an extensive survey and phylogenetic analysis of FeLV infection in free-ranging pumas (n = 641) and bobcats (n = 212) and shelter domestic cats (n = 304). Samples were collected from coincident habitats across the United States between 1985 and 2018. FeLV infection was detected in 3.12% of the puma samples, 0.47% of the bobcat samples, and 6.25% of the domestic cat samples analyzed. Puma prevalence varied by location, with Florida having the highest rate of infection. FeLV env sequences revealed variation among isolates, and we identified two distinct clades. Both progressive and regressive infections were identified in cats and pumas. Based on the time and location of sampling and phylogenetic analysis, we inferred 3 spillover events between domestic cats and pumas; 3 puma-to-puma transmissions in Florida were inferred. An additional 14 infections in pumas likely represented spillover events following contact with reservoir host domestic cat populations. Our data provide evidence that FeLV transmission from domestic cats to pumas occurs widely across the United States, and puma-to-puma transmission may occur in genetically and geographically constrained populations. IMPORTANCE Feline leukemia virus (FeLV) is a retrovirus that primarily affects domestic cats. Close interactions with domestic cats, including predation, can lead to the interspecific transmission of the virus to pumas, bobcats, or other feline species. Some infected individuals develop progressive infections, which are associated with clinical signs of disease and can result in mortality. Therefore, outbreaks of FeLV in wildlife, including the North American puma and the endangered Florida panther, are of high conservation concern. This work provides a greater understanding of the dynamics of the transmission of FeLV between domestic cats and wild felids and presents evidence of multiple spillover events and infections in all sampled populations. These findings highlight the concern for pathogen spillover from domestic animals to wildlife but also identify an opportunity to understand viral evolution following cross-species transmissions more broadly.


Assuntos
Gatos , Vírus da Leucemia Felina , Leucemia Felina , Puma , Animais , Gatos/virologia , Animais Selvagens/virologia , Vírus da Leucemia Felina/isolamento & purificação , Leucemia Felina/epidemiologia , Lynx/virologia , Filogenia , Puma/virologia , Estados Unidos
11.
Virus Evol ; 8(2): veac092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398096

RESUMO

SARS-CoV-2 (SARS2) infection of a novel permissive host species can result in rapid viral evolution. Data suggest that felids are highly susceptible to SARS2 infection, and species-specific adaptation following human-to-felid transmission may occur. We employed experimental infection and analysis of publicly available SARS2 sequences to observe variant emergence and selection in domestic cats. Three cohorts of cats (N = 23) were inoculated with SARS-CoV-2 USA-WA1/2020 or infected via cat-to-cat contact transmission. Full viral genomes were recovered from RNA obtained from nasal washes 1-3 days post-infection and analyzed for within-host viral variants. We detected 118 unique variants at ≥3 per cent allele frequency in two technical replicates. Seventy of these (59 per cent) were nonsynonymous single nucleotide variants (SNVs); the remainder were synonymous SNVs or structural variants. On average, we observed twelve variants per cat, nearly 10-fold higher than what is commonly reported in human patients. We observed signatures of positive selection in the spike protein and the emergence of eleven within-host variants located at the same genomic positions as mutations in SARS2 variant lineages that have emerged during the pandemic. Fewer variants were noted in cats infected from contact with other cats and in cats exposed to lower doses of cultured inoculum. An analysis of ninety-three publicly available SARS2 consensus genomes recovered from naturally infected domestic cats reflected variant lineages circulating in the local human population at the time of sampling, illustrating that cats are susceptible to SARS2 variants that have emerged in humans, and suggesting human-to-felid transmission occurring in domestic settings is typically unidirectional. These experimental results underscore the rapidity of SARS2 adaptation in felid hosts, representing a theoretical potential origin for variant lineages in human populations. Further, cats should be considered susceptible hosts capable of shedding virus during infections occurring within households.

12.
Viruses ; 14(10)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298647

RESUMO

Hepadnaviruses are partially double-stranded DNA viruses that infect a variety of species. The prototypical virus in this family is the human hepatitis B virus, which chronically infects approximately 400 million people worldwide and is a risk factor for progressive liver disease and liver cancer. The first hepadnavirus isolated from carnivores was a domestic cat hepadnavirus (DCH), initially identified in Australia and subsequently detected in cats in Europe and Asia. As with all characterized hepadnaviruses so far, DCH infection has been associated with hepatic disease in its host. Prevalence of this infection in the United States has not been explored broadly. Thus, we utilized conventional and quantitative PCR to screen several populations of domestic cats to estimate DCH prevalence in the United States. We detected DCH DNA in 1 out of 496 animals (0.2%) in the U.S. cohort. In contrast, we detected circulating DCH DNA in 7 positive animals from a cohort of 67 domestic cats from Australia (10.4%), consistent with previous studies. The complete consensus genome of the U.S. DCH isolate was sequenced by Sanger sequencing with overlapping PCR products. An in-frame deletion of 157 bp was identified in the N-terminus of the core open reading frame. The deletion begins at the direct repeat 1 sequence (i.e., the 5' end of the expected double-stranded linear DNA form), consistent with covalently closed circular DNA resultant from illegitimate recombination described in other hepadnaviruses. Comparative genome sequence analysis indicated that the closest described relatives of the U.S. DCH isolate are those previously isolated in Italy. Motif analysis supports DCH using NTCP as an entry receptor, similar to human HBV. Our work indicates that chronic DCH prevalence in the U.S. is likely low compared to other countries.


Assuntos
Hepadnaviridae , Gatos , Humanos , Estados Unidos/epidemiologia , Animais , Hepadnaviridae/genética , Prevalência , Vírus da Hepatite B/genética , Análise de Sequência de DNA/veterinária , DNA Circular , Genômica , DNA Viral/genética
13.
Front Vet Sci ; 9: 940007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157183

RESUMO

Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.

14.
Pathogens ; 11(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145389

RESUMO

Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. Classification of many of these species has recently changed due to genetic analysis, potentially affecting clinical diagnosis and disease management. In this review, we discuss dermatophyte classification including name changes for medically important species, current and potential diagnostic techniques for detecting dermatophytes, and an in-depth review of Microsporum canis, a prevalent zoonotic dermatophyte. Fungal culture is still considered the "gold standard" for diagnosing dermatophytosis; however, modern molecular assays have overcome the main disadvantages of culture, allowing for tandem use with cultures. Further investigation into novel molecular assays for dermatophytosis is critical, especially for high-density populations where rapid diagnosis is essential for outbreak prevention. A frequently encountered dermatophyte in clinical settings is M. canis, which causes dermatophytosis in humans and cats. M. canis is adapting to its primary host (cats) as one of its mating types (MAT1-2) appears to be going extinct, leading to a loss of sexual reproduction. Investigating M. canis strains around the world can help elucidate the evolutionary trajectory of this fungi.

16.
mSphere ; 7(4): e0016922, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862798

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and has resulted in millions of deaths worldwide. Certain populations are at higher risk for infection, especially staff and residents at long-term care facilities (LTCF), due to the congregant living setting and high proportions of residents with many comorbidities. Prior to vaccine availability, these populations represented large fractions of total coronavirus disease 2019 (COVID-19) cases and deaths in the United States. Due to the high-risk setting and outbreak potential, staff and residents were among the first groups to be vaccinated. To define the impact of prior infection on the response to vaccination, we measured antibody responses in a cohort of staff members at an LTCF, many of whom were previously infected by SARS-CoV-2. We found that neutralizing, receptor-binding domain (RBD)-binding, and nucleoprotein (NP)-binding antibody levels were significantly higher after the full vaccination course in individuals that were previously infected and that NP antibody levels could discriminate individuals with prior infection from vaccinated individuals. While an anticipated antibody titer increase was observed after a vaccine booster dose in naive individuals, a boost response was not observed in individuals with previous COVID-19 infection. We observed a strong relationship between neutralizing antibodies and RBD-binding antibodies postvaccination across all groups, whereas no relationship was observed between NP-binding and neutralizing antibodies. One individual with high levels of neutralizing and binding antibodies experienced a breakthrough infection (prior to the introduction of Omicron), demonstrating that the presence of antibodies is not always sufficient for complete protection against infection. These results highlight that a history of COVID-19 exposure significantly increases SARS-CoV-2 antibody responses following vaccination. IMPORTANCE Long-term care facilities (LTCFs) have been disproportionately impacted by COVID-19, due to their communal nature, the high-risk profile of residents, and the vulnerability of residents to respiratory pathogens. In this study, we analyzed the role of prior natural immunity to SARS-CoV-2 in postvaccination antibody responses. The LTCF in our cohort experienced a large outbreak, with almost 40% of staff members becoming infected. We found that individuals that were infected prior to vaccination had higher levels of neutralizing and binding antibodies postvaccination. Importantly, the second vaccine dose significantly boosted antibody levels in those that were immunologically naive prior to vaccination, but not in those that had prior immunity. Regardless of the prevaccination immune status, the levels of binding and neutralizing antibodies were highly correlated. The presence of NP-binding antibodies could be used to identify individuals that were previously infected when prevaccination immune status was not known. Our results reveal that vaccination antibody responses differ depending on prior natural immunity.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Humanos , Assistência de Longa Duração , SARS-CoV-2
17.
J Fungi (Basel) ; 8(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35887433

RESUMO

Microsporum canis is the primary agent causing dermatophytosis in cats, and also infects humans, dogs, and other species. Assessment of genetic variation among M. canis isolates in the United States has not been conducted. Further, M. canis mating type and assessment of disease severity associated with genotypic characteristics have not been rigorously evaluated. We therefore isolated M. canis from 191 domestic cats across the US and characterized genotypes by evaluation of ITS sequence, MAT locus, and microsatellite loci analysis. The genes SSU1 and SUB3, which are associated with keratin adhesion and digestion, were sequenced from a subset of isolates to evaluate potential genetic associations with virulence. Analysis of microsatellite makers revealed three M. canis genetic clusters. Both clinic location and disease severity were significant predictors of microsatellite variants. 100% of the M. canis isolates were MAT1-1 mating gene type, indicating that MAT1-2 is very rare or extinct in the US and that asexual reproduction is the dominant form of replication. No genetic variation at SSU1 and SUB3 was observed. These findings pave the way for novel testing modalities for M. canis and provide insights about transmission and ecology of this ubiquitous and relatively uncharacterized agent.

18.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638570

RESUMO

As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.


Assuntos
Doença de Alzheimer , Infecções por HIV , Vírus da Imunodeficiência Felina , Doença de Alzheimer/patologia , Animais , Gatos , Glicoproteínas , Vírus da Imunodeficiência Felina/fisiologia , Camundongos , Neurônios/patologia , Proteínas tau/genética
19.
Med Mycol ; 60(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999826

RESUMO

Dermatophytosis is a superficial fungal infection of keratinized tissues that can occur in humans and other animals. In domestic cats, the majority of cases are caused by Microsporum canis and can spread to other animals and humans via arthrospores. Between 2019 and 2021, 164 cases of suspected dermatophytosis were recorded in animals from a high-volume shelter in California. Samples (hair, nail, and skin scraping) were collected for routine screening from these individuals. One hundred and twenty-six of these were diagnosed as M. canis by culture and internal transcribed spacer (ITS) sequence. In four suspected dermatophytosis cases occurring in kittens in 2019, cultures grown at 20°C yielded fungi with colony morphology more similar to Arthroderma species than Microsporum. Morphologic and microscopic examinations were conducted, and gene segments for the ITS, ß-tubulin, and translation elongation factor 1-alpha (TEF1) regions were sequenced from DNA extracted from these cultures. Sequences were aligned to other dermatophytes using maximum likelihood and neighbor-joining trees and were compared to previously described fungal species to assess nucleotide homology. We identified two previously undescribed fungal species, herein proposed as Arthroderma lilyanum sp. nov. and Arthroderma mcgillisianum sp. nov. M. canis co-cultured in two of the four cases. Other physiologic tests supported this diagnosis. These species have significance as potential pathogens and should be considered as rule-outs for dermatophytosis in cats. The potential for infection of other species, including humans, should be considered. LAY SUMMARY: Two novel fungal species were cultured and characterized from four cases of suspected ringworm in cats at an animal shelter in CA, US. These species were genetically distinct from other dermatophytes and are herein described as Arthroderma lilyanum sp. nov. and Arthroderma mcgillisianum sp. nov.


Assuntos
Arthrodermataceae , Doenças do Gato , Dermatomicoses , Tinha , Animais , Arthrodermataceae/genética , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Gatos , Dermatomicoses/diagnóstico , Dermatomicoses/epidemiologia , Dermatomicoses/veterinária , Feminino , Cabelo , Microsporum , Tinha/diagnóstico , Tinha/epidemiologia , Tinha/veterinária , Tubulina (Proteína) , Estados Unidos/epidemiologia
20.
Nat Ecol Evol ; 6(2): 174-182, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087217

RESUMO

Hunting can fundamentally alter wildlife population dynamics but the consequences of hunting on pathogen transmission and evolution remain poorly understood. Here, we present a study that leverages a unique landscape-scale quasi-experiment coupled with pathogen-transmission tracing, network simulation and phylodynamics to provide insights into how hunting shapes feline immunodeficiency virus (FIV) dynamics in puma (Puma concolor). We show that removing hunting pressure enhances the role of males in transmission, increases the viral population growth rate and increases the role of evolutionary forces on the pathogen compared to when hunting was reinstated. Changes in transmission observed with the removal of hunting could be linked to short-term social changes while the male puma population increased. These findings are supported through comparison with a region with stable hunting management over the same time period. This study shows that routine wildlife management can have impacts on pathogen transmission and evolution not previously considered.


Assuntos
Vírus da Imunodeficiência Felina , Puma , Animais , Animais Selvagens , Feminino , Vírus da Imunodeficiência Felina/fisiologia , Masculino , Comportamento Predatório , Puma/fisiologia , Puma/virologia , Fenômenos Fisiológicos Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...